

Overview of Chinese performance standard

Revision of GB 12021.2 --- final version on Feb 09, 2015

Main difference to last version Jan. 2015

- Bonus for no-frost compartment extended to all compartments with forced airflow of frost free appliance
- Bonus for no-frost compartment with forced airflow kept 1.5
- Cancelled the separated bonus for transparent glass door but combined it into through in automatic ice-maker Sr: for the appliance type 1,2,3,4 with transparent glass door, if the size more than 50%: 1.5; for the appliance type 5,6,7,8,9 with transparent glass door, if the size more than 25%: 1.1
- Added the definition of no frost appliance: all compartments are automatically defrosted with automatic disposal of the defrosted water and at least one compartment is cooled by a frost free system
- Added the definition of door: the door which has proper sealing and can access the food staff in appliance

Content:

- General overview of new standard draft (final version)
- Main difference to current energy standard

■ General overview of new standard draft 4th edition

The Following 10 types are covered by new draft:

No.	Type of appliance	No. Type of appliance		
1	Refrigerator no star	6	Frozen food storage cabinet	
2	Refrigerator *	7	Chest refrigerator-freezer	
3	Refrigerator **	8	Chest freezer	
4	Refrigerator ***	9	Upright freezer	
5	Refrigerator-freezer	10	Wine cooler	

Determination of energy efficiency grade

- For refrigerator-freezer (type 5):

EEC 1	ηs ≤ 2 5%	&	ηt ≤ 50%
EEC 2	25% < ηs ≤ 35%	&	50% < ηt ≤ 60%
EEC 3	35% < ηs ≤ 50%	&	60% < ηt ≤ 70%
EEC 4	50% < ηs ≤ 60%	&	70% < ηt ≤ 80%
EEC 5	60% < ηs ≤ 70%	&	80% < ηt ≤ 90%

ηs = Standard energy efficiency index; index

ηt = Total energy efficiency

For other types, energy efficiency grade only determinated by the standard energy efficiency index ηs

- Wine cooler (type 10):

EEC 1	ns ≤ 55%
	110 = 0070

EEC 2
$$55\% < \eta s \le 70\%$$

EEC 3
$$70\% < \eta s \le 80\%$$

EEC 4
$$80\% < \eta s \le 90\%$$

EEC 5
$$90\% < \eta s \le 100\%$$

 $\eta s = Standard energy efficiency index$

- Chest refrigerator-freezer (type 7):

EEC 1	ηs	\leq	35	%
-------	----	--------	----	---

EEC 2
$$35\% < \eta s \le 45\%$$

EEC 3
$$45\% < \eta s \le 55\%$$

EEC 4
$$55\% < \eta s \le 65\%$$

EEC 5
$$65\% < \eta s \le 75\%$$

 $\eta s = Standard energy efficiency index$

- For other types of appliance (type 1, 2, 3, 4, 6, 8, 9):

EEC 1 $\eta s \le 45\%$

EEC 2 $45\% < \eta s \le 55\%$

EEC 3 $55\% < \eta s \le 65\%$

EEC 4 $65\% < \eta s \le 75\%$

EEC 5 $75\% < \eta s \le 85\%$

 ηs = Standard energy efficiency index

The Energy consumption limitation Emax is defined as follows:

No.	Type of appliance	Energy limitation value E _{max} [kWh/24h]
1	Refrigerator no star	0.85*(0.221 * V _{adj} + 233 + CH + Dc)* S _r / 365
2	Refrigerator *	0.85*(0.611 * V _{adj} + 181 + CH + Dc)* S _r / 365
3	Refrigerator **	0.85*(0.428 * V _{adj} + 233 + CH + Dc)* S _r / 365
4	Refrigerator ***	0.85*(0.624 * V _{adj} + 223 + CH + Dc)* S _r / 365
5	Refrigerator-freezer	0.7*(0.697 * V _{adj} + 272 + CH + Dc)* S _r / 365
6	Frozen food storage cabinet	0.85*(0.530 * V _{adj} + 190 + CH + Dc)* S _r / 365
7	Chest refrigerator-freezer	0.75*(0.697 * V _{adj} + 272 + CH + Dc)* S _r / 365
8	Chest freezer	0.85*(0.567 * V _{adj} + 205 + CH + Dc)* S _r / 365
9	Upright freezer	0.85*(0.539 * V _{adj} + 315 + CH + Dc)* S _r / 365
10	Wine cooler	(0.233 * V _{adj} + 245 + CH + Dc)* S _r / 365

Note: Appliances with an Energy consumption more than E_{max} are not allowed to be sold.

• Calculation of Standard Energy Efficiency Index ηs:

$$\eta s = Es / ((M * Vadj + N + CH + Dc) * Sr / 365) * 100%$$

Es = the measurement standard value of energy consumption of the appliance

Calculation of Vadj:

$$V_{adj} = \sum_{Compartments} (Vc \ x \ Fc \ x \ Wc \ x \ CC \ x \ BI)$$

Definition of Wc:

Compartme nt type	Cooler	Cellar	Chiller	lce comp.	0-star	1-star	2-star	3-star	freezer	Wine cooler
Tc (°C)	4	12	2	0	0	-6	-12	-18	-18	12
Wc	1.00	0.65	1.15	1.25	1.25	1.55	1.85	2.15	2.15	0.65

> If the compartment type is not included in above table, then Wc calculation as below:

$$W_c = \frac{(25 - Tc)}{20}$$

Thereof:

M, N: depends on the type of appliance

CH: factor for variable temp. compartments which include chiller function > 15

I: 50 kWh; variable temp. compartment include cooler,

chiller and 3-star freezer function, volume > 15l: 100kWh; otherwise 0;

Sr: factor for net volume of refrigerator more than 400 I and with through-in

automatic ice-maker: 1.1; otherwise 1.0. For the appliance type 1,2,3,4

with transparent glass door, if the size more than 50%: 1.5; ; otherwise 1.0.

For the appliance type 5,6,7,8,9 with transparent glass door, if the size

more than 25%: 1.1; otherwise1.0

Dc: correction factor for appliance doors \geq 4, Dc = 50, otherwise 0

Fc: correction factor for no-frost appliance with forced air flow 1.5, otherwise

1.0

CC: correction factor for climate class ST: 1.1, and climate class T: 1.2,

otherwise 1.0

BI: correction factor for built-in appliance 1.2, otherwise 1.0

Calculation of Standard value of energy consumption Es:

Es = [(Edaily,16°C * Day16°C + Edaily,32°C * Day32°C)+ Eaux] / 365

Edaily,16°C: measurement result of energy consumption under 16°C and stable condition

Edaily,32°C: measurement result of energy consumption under 32°C and stable condition

Eaux : Energy consumption of specified auxiliaries (not include tank type automatic icemaker)

 $Day16^{\circ}C = 192 days$

 $Day32^{\circ}C = 173 days$

Calculation of Total Energy Efficiency Index η_t:

$$\eta_t = E_t / ((M * V_{adj} + N + CH + D_c) * S_r / 365) * 100%$$

 E_t = the measurement total value of energy consumption of the appliance

Calculation of V_{adj}:

$$V_{adj} = \sum_{Compartments} (Vc \ x \ Wc \ x \ Fc \ x \ CC \ x \ BI)$$

M, N: depends on the type of appliance

CH: factor for variable temp. compartments which include chiller function > 15 l: 50 kWh; variable temp. compartment include cooler, chiller and 3-star freezer function, volume > 15l: 100kWh; otherwise 0:

 S_r : factor for net volume of refrigerator \leq 100 I, or net volume more than 400 I and with through-in automatic ice-maker: 1.1; otherwise 1.0. For the appliance type 1,2,3,4 with transparent glass door, if the size more than 50%: 1.5;

otherwise 1.0. For the appliance type 5,6,7,8,9 with transparent glass door, if the size more than 25%: 1.1;otherwise1.0

Dc: correction factor for appliance doors ≥ 4 , Dc = 50, otherwise 0

Fc: correction factor for no-frost appliance with forced air flow 1.5, otherwise 1.0

CC: correction factor for climate class ST: 1.1, and climate class T: 1.2, otherwise 1.0

BI: correction factor for built-in appliance 1.2, otherwise 1.0

Calculation of Total value of energy consumption Et:

Et = [(Edaily,16°C* Day16°C +Edaily,32°C* Day32°C)+ Eaux1 + b x Eaux2 +ΔEprocessing,annual] / 365

E_{dailv.16°C}: measurement result of energy consumption under 16°C and stable condition

E_{daily,32°C}: measurement result of energy consumption under 32°C and stable condition

E_{aux 1}: Energy consumption of specified auxiliarie: anti-condensation heater

E_{aux 2}: Energy consumption of specified auxiliarie: tank type automatic icemaker; b=0

ΔE_{processing,annual}: Annual energy increase of load processing

$$\Delta E_{\text{processing,annual}} = \Delta E_{\text{processing,16°C}} * Day_{16°C} + \Delta E_{\text{processing,32°C}} * Day_{32°C}$$

$$\Delta E_{processing,ambient} = \frac{E_{input-norminal}}{Efficiency_{load,ambient}} \times a$$

E_{input-normal}: heat energy removed from compartments

Efficiency_{load,ambient}: the load processing efficiency at the specified ambient temperature;

a=1

The values of M and N are given in the following table:

No.	Type of appliance	M	N
1	Refrigerator no star	0.221	233
2	Refrigerator *	0.611	181
3	Refrigerator **	0.428	233
4	Refrigerator ***	0.624	223
5	Refrigerator-freezer	0.697	272
6	Frozen food storage cabinet	0.530	190
7	Chest refrigerator-freezer	0.697	272
8	Chest freezer	0.567	205
9	Upright freezer	0.539	315
10	Wine cooler	0.233	245

Main difference to current energy standard

- Application scope was extended to built-in appliance, wine cooler and household appliance with transparent glass door
- Volume measurement refers to new IEC 62552 version
- Measurement method is changed: refer to GB8059 new draft (new IEC 62552 FDIS version, unload test under 16°C & 32°C)
- Fridge temperature changed to 4°C
- Added bonus 50 kWh for multi-door appliance (if doors ≥ 4)
- Added bonus 100 kWh for wide variable temp. compartment which include cooler, chiller and 3-star temp. zone
- Additional correction factor 1.5 for appliance type 1,2,3,4 with transparent glass door if the size more than 50%; additional correction factor 1.1 for appliance type 5,6,7,8,9 with transparent glass door if the size more than 25%.
- No-frost appliance with forced airflow compartment bonus 1.5
- Added bonus 1.2 for built-in appliance (same as EU standard)
- Measurement result of EEI should not be more than declaration 5%, volume not more than 3%

www.ceced.eu